基本概念
阅读信息
约 774 个字 3 分钟 本页总访问量:加载中... 次
事件概念
- 随机试验:对随机现象的试验
- 样本空间:所有可能结果的集合
- 样本点:一个结果
- 随机事件:样本空间的子集
- 基本事件:只有一个样本点的随机事件
- 事件发生:结果包含于事件
- 必然事件:全集
- 不可能事件:空集
事件运算
- 和事件:\(A\cup B\)
- 积事件:\(A\cap B=AB\)
- 互不相容(互斥):\(A\cap B=\varnothing\)
- 逆事件(对立事件):\(A\cup B=S\,\text{and}\, A\cap B=\varnothing\)
- 差事件:\(A-B\)
频率与概率基本概念
- 频数:n 次试验中发生次数
- 频率:n 次中频数/n 的比值
- 概率:频率的极限
- 古典概型:有限个样本点,等概率
- 条件概率:\(P(A|B)\)表示 B 发生的条件下 A 发生的概率
- 完备事件组:划分整个样本空间的一组事件
- 先验概率:贝叶斯公式中\(P(B_j)\)
- 后验概率:贝叶斯公式中\(P(B_j|A)\)
- 相互独立:\(P(AB)=P(A)P(B)\),积事件的概率等于概率的积
- 独立试验:试验结果互不影响
- 重复试验:相同条件下的试验
概率有可列可加性,如果有一列两两互不相容的事件 \(A_1, A_2, A_3, \dots\),那么
并非所有概率都能直接相加,比如线段上单点的概率都为 0,但整个区间的概率为 1。
基本公式
德摩根律:
差集的概率运算:
容斥原理:
至少一个事件发生 = 所有奇数个事件发生概率求和 - 所有偶数事件发生概率求和
条件概率乘法:
全概率公式:
\(B_1,B_2\cdots B_n\)是整个样本空间的划分,则
贝叶斯公式:
\(B_1,B_2\cdots B_n\)是整个样本空间的划分,则
其他:
几道例题
例题 1 错排问题概率
n 卡片随机排列,A=“至少一张卡片的序号和位置不一样”。当 n 趋向于无穷时,求 P(A)?
设 Ai=“第 i 张卡片的序号和位置不一样”
(2)是因为容斥原理,(3)是因为每个 Ai 等价。
又因为
有
例题 2 取牌问题
52 张牌取 13 张
(1)A=“恰好 2 张红桃,3 张方块”
每种取牌结果等可能。
(2)B=“取的 13 张中至少 2 张红桃”
从反面求解,反面为 0 张、1 张红桃。
例题 3 用概率判断条件
某接待站 12 次接待都在周二或周四,能不能认为接待时间有规定?
假设每天等概率,即接待时间没有规定,上述发生的概率为\((\frac{2}{7)^{12}}\),为小概率事件。
小概率事件发生,说明假设错误。接待时间有规定。
例题 4 抽签问题
a 白球 b 红球,a+b 个人,不放回取球,求第 k 个人取到红球的概率?
将取球看作所有球分配到 a+b 个空位上,每种分配方式等可能,总的可能分配方式为\((a+b)!\)
对于第 k 个人,第 k 位一定为红,有\(a\)种可能;剩余 k-1 位随机,有\((a+b-1)!\)种可能。
抽签问题中,抽到的概率与抽签次序无关。
几道例题
另一种想法?
先保证 2 张红桃,其余 11 张从取完两张剩下的 51 张中任意取?
为什么不对:相同的红桃方案,每次选取的“固定的”红桃不同,导致重复计数。